

 JavaScript Events
Peter-Paul Koch (ppk)

http://quirksmode.org
http://twitter.com/ppk

Yahoo!, 23 April 2009

Hell is other browsers - Sartre

http://quirksmode.org/

http://quirksmode.org/dom/events/

http://quirksmode.org/dom/events

Today's program:

- the key events
- the change event
- delegating the focus event
- first results of mobile event tests

The key events

keydown
When a key is depressed.

 Repeats.
keypress

keyup

keydown
When a key is depressed.

 Repeats.
keypress

When a character key is
 depressed.

Repeats.
keyup

keydown
When a key is depressed.

 Repeats.
keypress

When a character key is
 depressed.

Repeats.
keyup

When a key is released.

keydown and keypress

keydown only

Originally this theory was created
by Microsoft.

Safari has copied it.

It's the only theory; Firefox and
Opera just fire some random
events.

keydown
When a key is depressed.

 Repeats.
keypress

 When a character key is
 depressed.
 Repeats.

Which key did my user press?

Two properties:
keyCode and charCode

Two bits of data:
- the key code
- the character code

Which key did my user press?

Obviously, having one property
contain one bit of data and the other
property the other

would be far too simple.

Which key did my user press?

keyCode

- onkeydown: key code
- onkeypress: character code

Which key did my user press?

charCode

- onkeydown: 0
- onkeypress: character code

Which key did my user press?

If you need the key:

el.onkeydown = function (e) {
e = e || window.event;
var realKey = e.keyCode;

}

Which key did my user press?

If you need the key:

el.onkeydown = function (e) {
e = e || window.event;
var realKey = e.keyCode;

}

Which key did my user press?

If you need the character:

el.onkeypress = function (e) {
e = e || window.event;
var char = e.keyCode || e.charCode;

}

Which key did my user press?

If you need the character:

el.onkeypress = function (e) {
e = e || window.event;
var char = e.keyCode || e.charCode;

}

How can I prevent the default action?

el.onkeydown = function (e) {
e = e || window.event;
var key = e.keyCode;
if (key is incorrect) {

// cancel default action
}

}

How can I prevent the default action?

el.onkeydown = function (e) {
e = e || window.event;
var key = e.keyCode;
if (key is incorrect) {

// cancel default action
}

}

change

The change event fires when the value
of a form field is changed.

This could be a very useful event; after
all it fires only when the user actually
changes something
instead of whenever he focuses on a
form field

- text fields
- select boxes
- checkboxes and radios

- text fields
- select boxes
- checkboxes and radios

focus

blur

No change event. The value hasn't
been modified.

- text fields
- select boxes
- checkboxes and radios

focus

blur

Change event. The value has been
modified.

- text fields
- select boxes
- checkboxes and radios

Mouse:

Click on select

- text fields
- select boxes
- checkboxes and radios

Mouse:

Click on new option
CHANGE

- text fields
- select boxes
- checkboxes and radios

Keyboard:

 focus

Focus on select

- text fields
- select boxes
- checkboxes and radios

Keyboard:

 focus arrow

Arrow keys to move to other option
CHANGE

- text fields
- select boxes
- checkboxes and radios

Arrow keys to move to other option
CHANGE

This is a
BUG!

- text fields
- select boxes
- checkboxes and radios

Keyboard:

 focus arrow

Arrow keys to move to other option

- text fields
- select boxes
- checkboxes and radios

Keyboard:

 focus arrow blur

Blur select box.
CHANGE

- text fields
- select boxes
- checkboxes and radios

 click

CHANGE when the checked property
changes.

- text fields
- select boxes
- checkboxes and radios

 click

...

- text fields
- select boxes
- checkboxes and radios

 click blur

CHANGE when the element loses the
focus.

- text fields
- select boxes
- checkboxes and radios

CHANGE when the element loses the
focus.

This is a
BUG!

Event delegation

Event delegation

Multimedialize

Sound
Java applets

Ajaxify

Web 2.0
Web 3.0
Web 4.0b

Event delegation

Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = mouseOver;
dropdown.onmouseout = mouseOut;

}
}

The event bubbles up to the
anyway.

So why not handle it at that level?

Saves a lot of event handlers.

Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = mouseOver;
dropdown.onmouseout = mouseOut;

}
}

Works in all browsers.

 Event delegation

But suppose someone doesn't use a
mouse at all,

but the keyboard

how does the menu fold out?

Device
independence

 Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

Doesn't work without a mouse.

Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

We need events that tell us whether
the user enters or leaves a link.
focus and blur

Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover =
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout =
dropdown.onblur = this.mouseOut;

}
}

Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover =
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout =
dropdown.onblur = this.mouseOut;

}
}

Doesn't work.

Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover =
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout =
dropdown.onblur = this.mouseOut;

}
}

Focus and blur don't bubble.

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

Fire when the user initiates a device-
specific action.
mouseover, mouseout, click, keydown,
keypress

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

In general they bubble.

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

Fire when a certain event takes place,
regardless of how it was initialised.
load, change, submit, focus, blur

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

In general they don't bubble.

Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}

Event delegation

So we're stuck with setting a focus and
blur event on every single link.

Or are we ... ?

Event delegation

Event capturing to the rescue.

Event capturing is the opposite of
event bubbling,
and it is supported in all W3C-
compliant browsers.

Event bubbling
addEventListener('click',fn,false)

Event capturing
addEventListener('click',fn,true)

Event delegation

The point is that if you capture a focus
event,

event handlers on the target element's
ancestors are executed.

Event bubbling
Focus on a:
a.onfocus executed

Event capturing
Focus on a: ul.onfocus, li.onfocus and
a.onfocus executed

 Event capturing and bubbling

Why this difference?

I have no idea.

Maybe it's time to have bubbling and
capturing act the same.
The current situation doesn't make
sense (though it's useful).

 Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

 Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
dropdown.addEventListener

('focus',this.mouseOver,true);
dropdown.addEventListener

('blur',this.mouseOut,true);
}

}

 Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
if (dropdown.addEventListener) {

dropdown.addEventListener
('focus',this.mouseOver,true);

dropdown.addEventListener
('blur',this.mouseOut,true);

}
}

}

 Event delegation

And what about IE?

It doesn't support addEventListener,
but fortunately it supports the
focusin and focusout events
which are like focus and blur,
except that they bubble.

 Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
if (dropdown.addEventListener) {

dropdown.addEventListener
('focus',this.mouseOver,true);

dropdown.addEventListener
('blur',this.mouseOut,true);

}
}

}

 Event delegation

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
if (dropdown.addEventListener) {

dropdown.addEventListener
('focus',this.mouseOver,true);

dropdown.addEventListener
('blur',this.mouseOut,true);

}
dropdown.onfocusin = this.mouseOver;
dropdown.onfocusout = this.mouseOut

}

 Event delegation

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
if (dropdown.addEventListener) {

dropdown.addEventListener
('focus',this.mouseOver,true);

dropdown.addEventListener
('blur',this.mouseOut,true);

}
dropdown.onfocusin = this.mouseOver;
dropdown.onfocusout = this.mouseOut;

Device
independence

Mobile phones

The Mobile Web is finally coming,
and thanks to Vodafone I'm able to
give you some information,
although the subject remains a tricky
one.

Mobile phones – input modes

On mobile phones there are three
input modes:
- Touch
- Cursor (or rather, pseudo-cursor)
- Four-way navigation (“arrow” keys)

Opera Mini 4.2
on Nokia E71

Pseudo-
cursor input
mode

Opera Mobile
8.00 on
Motorola V3xx

Four-way
navigation

NetFront on
Sony Ericsson
K770i

Four-way
navigation,
but which
link do you
follow when
you click?

Mobile phones – events

In such an environment, what does
“mouseover” mean?

And what about mouseout,
mousemove, mousedown, mouseup?

And click?

Mobile phones – events

I set up a test in which I “click” on a
<div> element and see which events
take place.

First some good news:

S60 WebKit on
Nokia E71
Input: cursor

The same as
desktop
browsers

Opera Mobile
9.5 on HTC
Touch Diamond
Input: touch

This is the
same as the
iPhone does.

Mobile phones – events

So Nokia cursor phones behave
exactly as desktop computers,

while the latest Opera behaves exactly
as the iPhone.

Mobile phones – events

iPhone/Opera model:

As soon as the user touches an element
mouseover, mousemove, mousedown,
mouseup, and click fire,
and the :hover styles are applied.

When user touches another element, mouseout
fires and :hover styles are removed

Mobile phones – events

Now for some bad news.

Blackberry
Storm
Input: touch

No
mouseover,
-out, or
-move

NetFront on
Samsung F700
Input: touch

Where's the
click?

Mobile phones – events

These are only 4 of the 19 browsers I
tested,
and there are hundreds of browsers on
mobile phones.

Mobile phones – events

General rules for events on mobile
phones 1/3:
- use click (and let's politely but firmly give
the finger to browsers that do not support it)
- forget about the mouse events

In fact, I think the time has come to
retire the mouse events on all devices
(with a few exceptions)

Mobile phones – events

General rules for events on mobile
phones 2/3:
- use the resize AND the
orientationchange event

orientationchange is supported only by iPhone
and Blackberry
resize is supported by Opera and all WebKits
NetFront doesn't support either – too bad

Mobile phones – events

General rules for events on mobile
phones 3/3:
- use key events only for setting
general access keys;
and NOT for reading out user input in a form
field

You should read out the field's value instead.

Event compatibility for desktop:

http://quirksmode.org/dom/events

Mobile compatibility
(work in progress)

http://quirksmode.org/m/

http://quirksmode.org/dom/events

Thank you
for your attention

Questions?

Ask away.

Or ask me on Twitter
http://twitter.com/ppk
or on my site
http://quirksmode.org

