Ajax at Work:
A Case Study

Peter-Paul Koch (ppk)
http://www.quirksmode.org

http://www.quirksmode.org/

Why Ajax?

Enhancing customer expectations

Why Ajax?

Because 1it's popular!

@ AJAX i oo

,:.__ i Lhe M L
N E———]

Why Ajax?

Because it's the future!

A

Why Ajax?

Because clients want to score!

Why Agax JavaScript?

The purpose of JavaScript is
adding usability to a web page.

Ideally the page should remain
accessible, though.

Why Agax JavaScript?

Use JavaScript only if it gives a
significant usability benefit over
a non-scripted page.

So what do we use Ajax for?

| The Ajax Gods

x
——— E
A <

L

Lug - ancient fertility God Rate Lug

LERL R R R

Made the switch to Ajax relatively recently.

(Note the traditional gesture of propitiation.)

So what do we use Ajax for?

Emulating frames

<frameset rows="150,*">
<frame src="header.html” />
<frame src="thumbs.html” />

< /frameset>

Is‘thiswhatAjaxis all about?

"-f'-ii-'| The Ajax Gods

N
Lug - ancient fertility God Rate Lug

LERL R+

Made the switch to Ajax relatively recently.

(Note the traditional gesture of propitiation.)

‘-.,.L/ﬁ‘;
\ <

el h"‘""

The Ajax Gods

Lug - ancient fertilit E te Llig]

Made the switch to Ajax relati

oo oo o

-Iw_.ll

(Note the traditional gesture of propitiation.)

Rate Lug

& @ &y €» €

Rate Lug

o @ Click!

(query to server)

Rate Lug

L o L L
cu? @ ¢u° cu? c-u:) (response

from server)
—=ag}

Rate Lug

L’ © © L L
cu", ¢0$ ¢u° ¢u° ¢u° (response
from server)

Insufficient rating. -
Try propitiating
Lug again.

So what do we use Ajax for?

Sending queries and receiving
responses. Pretty standard
nowadays.

Still, we could do this with
frames, too, if we really
wanted.

(Personal opinion warning)

The less our application
emulates frames, the more
Ajaxy it becomes.

(Personal opinion warning)

Whenever you concelve an
Ajax-application, ask yourself
if frames could do the job,
too.

(Personal opinion warning)
If the answer 1s “Yes, easily”

ask yourself whether you
really need Ajax .

Today's case study

An interactive family tree
of the Plantagenets & Tudors
(1216-1603)

Ajax is used for fetching new data
(The real trouble lies in the display of the data.
That's not today's subject, though.)

An interactive family tree
of the Plantagenets & Tudors
(1216-1603)

See it live at http://quirksmode.org/familytree/

Firefox and Safari only — for now

http://quirksmode.org/familytree/

Getting the family tree data
from the server 1s clearly a
job for Ajax.

John of Gaunt Blanche
Duke of Lancaster X 1945 - 1360
1342 -1300
Henrv IV é& Mary
King of England 1970 - 1904
1366 - 1417
?

(query to server)

John of Gaunt Blanche
Duke of Lancaster X 1945 - 1360
1340-1390

Henrv IV *_.

King of England

1366 - 1417

<XML>-

Mary
1572 -1594

(from server)

15340 -1390

John of Gaunt Blanche
Duke of Lancaster X 1945 - 1360

Henrv IV #’1} Mary

King of England X 1970 - 1904

1366 - 1417
Henry V @ Thomas John Humphrey
King of England Duike of Clarence Duke of Bedford Duke of Gloucester
1387 - 1422 13868 - 1421 1359 - 1435 1390 - 1447

\ 4

We can't really do this with
frames.

Ajax 1s the only solution.

So what do we use Ajax for?

Data mining

Getting data from server is a
job for Ajax

Displaying the results needs
some DOM seripting (which
isn't Ajax, strictly speaking), as
well as a lot of CSS

So what do we use Ajax for?
Data mining

Getting data from server is a
job for Ajax

Dicnlavimned]] i

'+ A

weH&safetefCSS

SJ9

Getting data from server

<person id="15">
<name>
<short>Richard II</short>
</name>
<birth>1365</birth><death>1400</death>
<father idref="3">Edward</father>
<mother 1dref—"8" >Joan</mother>
<ranks>
<rank>
<predecessor idref="1">Edward III1</predecessor>
<title>King of England</title>
<start>1377</start>
<end>1399</end>
<successor idref="17">Henry IV</successor>
</rank>
</ranks>
</person>

n_.n

Why XML?

Facilitating existing technologies

Why XML?

AJAX
Asynchronous JavaScript and

XML

Why XML?

Ajax doesn't need XML.

XML is just one possibility.

Sending data to client

1. XML
2. JSON
3. HTML
4. CSV

XML

<person id="15">
<name>
<short>Richard II</short>
</name>
<birth>1365</birth><death>1400</death>
<father idref="3">Edward< /father>
<mother 1dref—"8">J oan</mother>
<ranks>
<rank>
<predecessor idref="1">Edward I1I</predecessor>
<title>King of England < /title>
<start>1377</start>
<end>1399</end>
<successor idref="17">Henry IV</successor>
</rank>
< /ranks>
</person>

n_n

XML

<person id="15">
<name>
<short> </short>
</name>
<birth> < /birth><death> </death>
<father idref=":"> </father>
<mother idref="5"> </mother>
<ranks>
<rank>
<predecessor idref="1"> < /predecessor>
<title> < /title>
<start> < /start>
<end> </end>
<successor idref="17"> < /successor>
</rank>
</ranks>

</person>

XML

Read out the name:

person.getElementsByTagName('short')[0].
firstChild.nodeValue

XML
Advantages

* Humans can read XML

* Many languages have XML support
and use the W3C DOM

Disadvantages
* Verbose and clunky

INIO\

"name': {"short": "Richard IT"},

"birth": "1365",

"death": "1400",

"father": {"idref": "3","name": "Edward"},
"mother": {"idref": "8","name": "Joan"},
"ranks": {

{
"title": "King of England”,
"Start": "1377",
"end": "1399",
"predecessor": {"name": "Edward III","idref": "1"},

"successor': {"name": "Henry IV","idref": "17"}

JSON

Read out the name:

person.name.short

JSON

"name': {"short": "Richard IT"},

"birth": "1365",

"death": "1400",

"father": {"idref": "3","name": "Edward"},
"mother": {"idref": "8","name": "Joan"},
"ranks": {

{
"title": "King of England",
"Start": "1377",
"end": "1399",
"predecessor’: {"name": "Edward III","idref": "1"},

"successor': {"name": "Henry IV","idref": "17"}

Can you spot the error?

INIO\

"name': {"short": "Richard IT"},

"birth": "1365",

"death": "1400",

"father": {"idref": "3","name": "Edward"},
"mother": {"idref": "8","name": "Joan"},
"ranks": {

{
"title": "King of England”,
"Start": "1377",
"end": "1399",
"predecessor": {"name": "Edward III","idref": "1"},

"successor': {"name": "Henry IV","idref": "17"}

INTO

F L~ - - - G
speech / k \ speech
namgpug {"ShOI't" "R II"} :r.‘_.r._._i_._.i*\.‘l,,l.\.;
"bl]:‘th" "1365",) ;.r : 1.1" g
"death": "1400", il I O O
"f heI‘" {nidrefn iv " nnamen vadw SR T 15 W
Ia—, !
1 " ', n On " ") G
pagic antth?vr { ldref' : - ' prosody
5 Tl(S / trmed units T.llTI-I:-d units
: i i .
landmatks : landmarkrefs \ landmack cefs
%tlﬂe" J“I\lug, ot and/,
mtau::lns citations Z?dr;tv 13 91 ﬂ':'k}:“ G T-DI'ESFIS
| " " ne
J, ¢ predecesso ame I","id
; ——1"'successor" e . idref"|
wordlist 1}0,3:11151 :

b

tcansactions

JSON

Advantages

* Same functionality as XML, but
lighter

Disadvantages

* Relatively unknown outside geek
circles (as yet)

* Less human-readable; hard to
check by eye alone

HTML

<div class="person king">
<h2>Richard II
<small>King of England</small>
</h2>
<p>1365 - 1400</p>
</div>

HTML

<div class="person king"
father="3" mother="8"

n_n

predecessor="1" successor="17">
<h2>Richard II
<small>King of England</small>
</h2>
<p>1365 - 1400</p>
</div>

HTML

<div class="person king
father=3 mother=8 predecessor=1 successor=17">
<h2>Richard II
<small>King of England</small>
</h2>
<p>1365 - 1400</p>
</div>

HTML

Advantages
* Really simple
* Best for accessibility

Disadvantages
* Relational data difficult to
incorporate

CSV

Richard I1,1365,1400,Edward,3,Joan,8,King of
England,1377,1399,Edward II1,1,Henry IV,17

CSV

Richard I1,1365,1400,Edward,3,Joan,8,King of
England,1377,1399,Edward II1,1,Henry IV,17

Who's this Edward?

CSV
Advantages

* Easy to parse for programming
languages

Disadvantages

* No meta-data
* Not human-readable

Decision time

Which format did I choose and
why?

CSV
HTML
XML
JSON

Decision time

Which format did I choose and
why?

CSV: no meta-data
HITML

XML

JSON

Decision time

Which format did I choose and
why?

Et g rreta—cads
HITML

XML

JSON

Decision time

Which format did I choose and
why?

CSV-nometa-data
HTML.:
* unsuited for relational data
* there are no pages, so no
accessibility benetfit
XML
JSON

Decision time

Which format did I choose and
why?

CSVnometa-data

Decision time

Which format did I choose and
why?

CSVnometa-data
S

= J
*hﬁ%f&ﬁeﬁﬂg%ﬂ@.] i e
XML

JSON: social factors

Decision time

Which format did I choose and
why?

CSVnometa-data

Social factors

JSON is relatively unknown (as
yet).

Therefore, company X, which is
going to produce the database,

may not know how to work with
JSON.

Social factors - XML

Me:
“Hello, I'd like you to send me my
data in XML."

Them:
“Yes, of course! We just bought
this £60,000 component that does
exactly that.”

Social factors - XML

XML

Yes

Social factors - JSON

Me:
“Hello, I'd like you to send me my
data in JSON"

Them [confused]:
“In what?”

Communication enters danger
ZOne.

Social factors - JSON

Me:
“JSON, you know, the light-weight
data interchange format invented
by Douglas Crockford."

Them:
“Erm ... well ... we're focusing on
enterprise-wide leveraging
software right now, so I'm not sure
this is going to work.”

Social factors - JSON

Total communication breakdown

Social factors

You cannot assume that every
server-side party knows JSON.

You can assume that every server-
side party knows XML.

For the moment XML is the safer
choice when working with third
parties.

Loading

Integrating timeless experiences

Situation

Right now I load all XML at once.
120 Plantagenets, 46K.

Edit Wiew

History Bookmarks Tools

XML

1421-1471

Henrv IV Maryv
King of England X 1370 - 13094
1366-1413
Henry ¥V Catherine of
King of England France
1387 - 1422 1421-1438
Henrv VI
King of England

cperson id="i§">«<name>
<short>Richard I1</fshort>
</namex<birth>1365< fbirth»
cdeath»i400< death>

cfather idref="9"» Edward
</father» cmother idref="8"»
Joan< /mother><ranks><rank>
cpredecessor idref="1"»
Edward ITl</predecessors
<title>King of England«< /title»
<start»i377</start><end>1399
<fend><successor idref="17"»
Henry IV« /soceessore<frank>
</ranks» < fperson>

cpersen id="i§"><name>
<short»Richard I1</short>
</namex<birth>1365< fbirth»
cdeath>1400< fdeath>

<fother idref="3"»Edward
</father» cmother idref="8"»
Joan< /mother><ranks><rank>
cpredecessor idref="1"»
Edward ITl</predecessors
<title>King of England< /title>
cptart» 1377« /start>cend>1399

Situation

Right now I load all XML at once.
120 Plantagenets, 46K.

Eventually the applications could
contain all royal houses of Europe;
thousands of persons.

We need a more sophisticated load
strategy.

Load strategy

1) Store all data you receive, so that you
never have to request it again.
(Rather obvious.)

2) Define the problem: loading cascade.

Loading cascade — the situation

1) User clicks on Richard of York. The
new view needs Richard's children
and grandchildren.

2) Richard's XML contains his children.
Load these from server
request('62','63','64','65','66'):;

Loading cascade — the situation

3) Once we have Richard's children, we
need their children.

4) Parse newly received XML and
extract their child IDs.

5) Load grandchildren.

request('lots’,'of’,'i1ds");

Loading cascade — the situation

6) But what about more complicated
situations? Suppose the view needs

the parents-in-law of Richard's
children?

7) Load children, then spouses of
children, then parents of spouses.

Loading cascade — the situation

8) General problem: you don't know
which XML to load before other
XML has been parsed.

Load strategy

1) Store all data you receive, so that you
never have to request it again.
(Rather obvious.)

2) Define the problem: loading cascade.

3) Decide who will do the work:
JavaScript, or PHP.

Doing the work - JavaScript?

Receive XML, parse it for the IDs we
need, and send out a new request.

e Edit Wiew

History Bookmarks Tools Help

XML

<person id="i§"><name>
<short>Richard Il <fshort»
</numer<birth>1365< /birth>

<denth>1400< death>

XML

Henrv IV Maryv
King of England X 1370 - 13094
1368- 1413
Henry ¥V Catherine of
King of England France
1387 - 1422 1421-1438
Henrv VI
King of England
1421-1471

<person id="15"><namex»
<short>Richard Il </short>
</namex<birth>1365</birth>
cdeath»1400«fdeath>

<father idref="3">»Edward

< /father><mother idref="8"»
Joan« fmother><ranks»<rank>
cpredecessor idref="1">»
Edward Ill</predecessor>
<title>King of England« ftitle»
catort> 1377 < /start>cend>1399
</end><successor idref="17"»
Henry IV« /soccessor>«<frank>

</ranks> < /person>

Doing the work - JavaScript?

Receive XML, parse it for the IDs we
need, and send out a new request.

Feasible, but in complicated situations
you might need a few requests before
you can show the data.

e Edit Wiew

History Bookmarks Tools Help

Henrv IV
King of England

134648 - 1417

XML

cperson id="i§"><namex»
<short>Richard Il </short>
</namex<birth>1365</birth>
cdeath>i400< death>

XML

cperson id=s"i15"><namex>
<short>Richard Il</short>
</namex<birth>1365< /birth>

cdeath>1400</death>

Maryv
X 1370-1394
Henry ¥V Catherine of
King of England France
1387 - 1422 1421-1438
Henrv VI
King of England

1421-1471

XML

cperson id="i§">»<name>

<short>Richard Il </short>
</namex<birth»1365</birth>
cdeath>1400</death>

Doing the work - PHP?

Send request for something like
“/children/spouses/parents”

PHP interprets this as

1) Find children of selected person
2) Find their spouses

3) Find their parents

ile Edit Wiew Hiskory Bookmarks Tools Help

PHP

<? php»

else P

if (something is the case)

printf("<xml><person>');

XML

cperson id="i5"><name>

<short>Richard I1</short>
</name><birth>1365< fbirth»

cdeath>1400<fdeath»

Henry IV s Mary
King of England X 1370 - 13094
1368- 1413
Henry ¥V Catherine of
King of England France
1387 - 1422 1421-1438
Henrv VI
King of England
1421-1471

XML

cperson id="i5"><name>

<short>Richard I1«</short>
</namex<birth>i365< /birth>

cdeath>1400<fdeath»

XML

cperson id=s"i15"><namex>

<short>Richard Il</short>
</mamex<birth>1365< /birth>

cdeath>1400</death>

Doing the work - PHP?

Send request for something like
“/children/spouses/parents”

PHP interprets this as

1) Find children of selected person
2) Find their spouses

3) Find their parents

Then send back all this info in one XML
file.

Bookmarks Tools

XML

cperson id="i§"><namex>

<short>Richard Il </short>
</namer<birth>1365< /birth>
cdeath>i400< death>

<father idref="9">Edward

< /father><mother idref="8"»
Joan« fmother><ranks»<rank»
cpredecessor idref="1"»
Edward Ill</predecessor>
<title>King of England« ftitle»
cstart>1377</start><end>1399
</end><successor idref="17"»
Henry IV« /soccessor>«<frank>

</ranks> < /person>

1421-1471

Henrv IV Maryv
King of England X 1370 - 13094
1366-1413
Henry ¥V Catherine of
King of England France
1387 - 1422 1421-1438
Henrv VI
King of England

Decision time

Who will search for the data:
JavaScript or PHP?

Partly depends on programming
skills.

Decision time

General rule:

Assume the server 1s faster
than the browser.

(Source: Yahoo!; see especially

http://yuiblog.com/blog/2006/11/28 /performance-
research-part-1/)

Decision time

So it's best to gather all XML files
in PHP and send them to the
browser in one batch.

One other possibility: preloading

Preloading

Preload data while the user is busy
studying other data.

Hardly ever discussed; found only

one article

(http://particletree.com/features/preloading-data-with-
ajax-and-json/)

Preloading

Problem: how do we know which
data the user wants to see next?

We don't.

Especially not in a dynamic
environment such as family trees.

Preloading

So preloading cannot be used for
the time being.

We're left with the PHP solution.

Conclusions

When an Ajax solution is
proposed, always wonder if the
same effect can be obtained by
using frames.

If “Yes”, ask yourself whether
Ajax 1s really needed.

Conclusions

Despite JSON being the better
format in the long run, right
now XML is the best way of
communicating with the server.

NOT because of the “X” in Ajax
but because the average third
party will have heard of it.

Conclusions

My family tree application needs
a sophisticated load strategy
that allows for a loading
cascade.

This topic is underreported.

Conclusions

The server should do most of the
data-collection work, because
it's faster than the client.

Conclusions

For the time being, there are
more questions than answers
when working with Ajax.

If you find answers, write them
down and publish them!

Thank you

