
A pixel is not
a pixel
Peter-Paul Koch

http://quirksmode.org
http://twitter.com/ppk

SF HTML5, 6 April 2012

http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org

Example site
• http://mobilism.nl/2012/

• A proper responsive site that you can use
on any device

• For most of the presentation I’m going to
pretend it’s not mobile-optimised

http://mobilism.nl/2012/
http://mobilism.nl/2012/

A pixel is not a pixel
• Three kinds of pixels

• Two viewports

• Zooming

• How to access all this with JavaScript

• Media queries width and device-width

• Meta viewport

Pixels

A pixel is not a pixel
• CSS pixels

• Density-independent pixels

• Device pixels

CSS pixels
• CSS pixels are the ones we use in

declarations such as width: 190px or
padding-left: 20px

• They are what we want

• Their size may be increased or decreased,
though

Device pixels
• Device pixels are the physical pixels on the

device

• They have a fixed size that depends on the
device

Device pixels

Device pixels
<meta name=”viewport”

content=”width = device-width”>

• What is the device width?

• The number of device pixels

• So on the iPhone, your site is restricted to
320px

Device pixels
• But ...

• Devices get higher and higher pixel
densities

• In theory this would mean that the meta
viewport width also goes up

• But that would break sites

Device pixels

Density-independent pixels

• Thus device vendors created density-
independent pixels (dips)

• They are another abstraction layer

• The number of dips is equal to the number
of CSS pixels that is optimal for viewing a
website on the device at 100% zoom

• For the iPhone that’s 320px

Density-independent pixels

<meta name=”viewport”

content=”width = device-width”>

• What is the device width?

• The number of dips

• So on the iPhone, your site is still restricted
to 320px

• even on a Retina display

Density-independent pixels

• CSS pixels

• Density-independent pixels

• Device pixels

What do we need?

What do we need?
• CSS pixels

• Density-independent pixels

• Device pixels

What kind of pixels?
If a certain JavaScript property is expressed in
pixels

always ask yourself what kind of pixels.

Usually it’s CSS pixels, especially for anything
related to CSS

Sometimes it’s device pixels or dips, for
anything related to screen size

Viewports

Viewports
• The viewport is the total amount of space

available for CSS layouts

• On the desktop it’s equal to the browser
window

• The <html> element has an implicit width:
100% and spans the entire viewport

Viewports
• On mobile it’s quite a bit more complicated

• If the (narrow) browser window were to
be the viewport, many sites would be
squeezed to death

• And mobile browsers must render all sites
correctly, even if they haven’t been mobile-
optimized

Viewports
• That’s why the mobile browser vendors

have split the viewport into two:

• The layout viewport, the viewport that CSS
declarations such as padding-left: 34% use,

Viewports
• That’s why the mobile browser vendors

have split the viewport into two:

• The layout viewport, the viewport that CSS
declarations such as padding-left: 34% use,

• and the visual viewport, which is the part of
the page the user is currently seeing

• Both are measured in CSS pixels

Viewports
• Initially most browsers make the visual

viewport equal to the layout viewport

• by zooming the page out as much as
possible

Viewports
• Initially most browsers make the visual

viewport equal to the layout viewport

• by zooming the page out as much as
possible

• Although the page is unreadable, the user
can at least decide which part he’d like to
concentrate on and zoom in on that part

Zooming

Zooming
• Zooming on desktop and mobile are totally

different

• On desktop the viewport is narrowed,
which causes elements with padding-left:
34% to be recalculated (though they should
still take up the same ratio)

• and elements with a width: 190px to
become relatively wider

Zooming
• On mobile the visual viewport is

decreased, so that the user sees less of the
complete site

Zooming
• On the desktop the viewport becomes less

wide and the CSS pixels become larger.

• The same amount of device pixels now
contain less CSS pixels, after all.

Zooming
• On mobile the visual viewport becomes

less wide, but the layout viewport remains
static. Thus CSS declarations are not re-
computed.

• The visual viewport now contains less CSS
pixels.

JavaScript
properties

screen.width and screen.height

• The width and height of the screen

• In device pixels (or dips)

• Totally useless. Don’t bother reading it out

JavaScript properties

document.documentElement.clientWidth and
document.documentElement.clientHeight

• The width and height of the layout viewport

• In CSS pixels

• Useful, though mostly because of media
queries

JavaScript properties

window.innerWidth and window.innerHeight

• The width and height of the visual viewport

• In CSS pixels

• Extremely important. It tells you how much
the user is currently seeing

JavaScript properties

document.documentElement.offsetWidth and
document.documentElement.offsetHeight

• The width and height of the <html> element

• In CSS pixels

• Very occasionally useful

JavaScript properties

window.pageXOffset and window.pageYOffset

• The current scrolling offset

• In CSS pixels

• Useful. Works just as on desktop

JavaScript properties

• System pioneered by Nokia and BlackBerry

• Picked up by Apple

• Android supports it only from 3 on

• IE9 on Windows Phone does not support it

• But otherwise browser compatibility is
quite decent

JavaScript properties

document.documentElement.clientWidth /
window.innerWidth

• This gives the current zoom level

• You’re not interested in the zoom level,
though

• You want to know how much the user is
currently seeing

• The visual viewport, in other words

JavaScript properties

Media
queries

Media queries
• There are two important media queries:

• width

• device-width

• width is the one you want

Media queries
• device-width gives the width of the device

screen

• in device pixels

• Equal to screen.width

Media queries
• width gives the width of the viewport

• in CSS pixels

• (There are a few zooming problems on
desktop, though)

• Equal to
document.documentElement.clientWidth

Media queries
• device-width gives the width of the device

screen

• in device pixels or dips

• Equal to screen.width

• On mobile the screen is far smaller than on
desktop, but that doesn’t matter

Media queries
• width gives the width of the viewport

• in CSS pixels

• Equal to
document.documentElement.clientWidth

• On mobile this means the layout viewport

Media queries
• width is the media query you want

• but at first sight it seems to be totally
useless on mobile

• Usually we don’t care about the width of
the layout viewport

• We need to treat one more element,
though.

Meta
viewport

Meta viewport

<meta name=”viewport”
content=”width=device-width”>

Meta viewport

@viewport {
 width: device-width;
}
Only Opera for now

Meta viewport
<meta name=”viewport”

content=”width = device-width”>

• The meta viewport tag tells the browser to
set the size of the layout viewport

• You can give a pixel value

• or device-width, which means the screen size
in dips

Meta viewport
<meta name=”viewport”

content=”width = device-width”>

• There is little reason to use other values
than device-width

• And because you tell the layout viewport to
become as wide as the device

• the width media query now contains useful
data

Media queries
• In theory the device-width and width media

queries would now return the same values

• but only when the zoom level is 100%

• This is a frighteningly complicated area

• Don’t go there

• Use width

Mobile versions
• So the trick for creating a mobile version of

a site

• is using <meta name=”viewport”
content=”width=device-width” />

• in combination with width media queries

• You probably already knew that

• but now you also understand why

Peter-Paul Koch
http://quirksmode.org
http://twitter.com/ppk

SF HTML5, 6 April 2012

Thank you
I’ll put these slides online

Questions?

http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org

