
A pixel is not
a pixel
Peter-Paul Koch

http://quirksmode.org
http://twitter.com/ppk

MoBeers, 10 April 2012

http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org

Example site
• http://mobilism.nl/2012/

• A proper responsive site that you can use
on any device

• However, for most of the presentation I’m
going to pretend it’s not mobile-optimised

http://mobilism.nl/2012/
http://mobilism.nl/2012/

What we’ll discuss
• Three kinds of pixels

• Two viewports

• Two kinds of zooming

• Five JavaScript property pairs

• Two media queries

• One meta viewport to rule them all

Pixels

Pixels according to W3C
“The reference pixel is the visual angle of one
pixel on a device with a pixel density of 96dpi
and a distance from the reader of an arm's
length. For a nominal arm's length of 28
inches, the visual angle is therefore about
0.0213 degrees. For reading at arm's length,
1px thus corresponds to about 0.26 mm (1/96
inch).”

Source: http://www.w3.org/TR/css3-values/#reference-pixel

http://www.w3.org/TR/css3-values/#reference-pixel
http://www.w3.org/TR/css3-values/#reference-pixel

Pixels according to W3C

Source: http://www.w3.org/TR/css3-values/#reference-pixel

http://www.w3.org/TR/css3-values/#reference-pixel
http://www.w3.org/TR/css3-values/#reference-pixel

This is a monkey

Laughing at W3C

Pixels according to W3C

Pixels according to W3C
• So the pixel is a certain angle in your view

• which means you cannot zoom it

• An inch is defined as 96 pixels

• and it gets progressively worse from there

Pixels according to W3C
• You can’t use min-height: 6mm and be

certain that your element is at least 6 real
mm high

• Zooming is not mentioned at all

• W3C’s definition is useless and everybody
ignores it

• Especially mobile browsers

A pixel is not a pixel
• CSS pixels

• Density-independent pixels

• Device pixels

None of these have anything to do with W3C’s
definition.

CSS pixels
• CSS pixels are the ones we use in

declarations such as width: 190px or
padding-left: 20px

• They are an abstract construct

• Their size may be increased or decreased

Device pixels
• Device pixels are the physical pixels on the

device

• There’s a fixed amount of them that
depends on the device

Device pixels

Device pixels
<meta name=”viewport”

content=”width = device-width”>

• What is the device width?

• The number of device pixels

• So on the iPhone, your site is restricted to
320px

Device pixels
• But ...

• Devices get higher and higher pixel
densities

• In theory this would mean that the meta
viewport width also goes up

• But that would break sites

Device pixels

Density-independent pixels

• Thus device vendors created density-
independent pixels (dips)

• They are another abstraction layer

• The number of dips is equal to the number
of CSS pixels that is optimal for viewing a
website on the device at 100% zoom

• For the iPhone that’s 320px

Density-independent pixels

<meta name=”viewport”

content=”width = device-width”>

• What is the device width?

• The number of dips

• So on the iPhone, your site is still restricted
to 320px

• even on a Retina display

Density-independent pixels

• CSS pixels

• Density-independent pixels

• Device pixels

What do we need?

What do we need?
• CSS pixels

• Density-independent pixels

• Device pixels

Viewports

Viewports
• The viewport is the total amount of space

available for CSS layouts

• On the desktop it’s equal to the browser
window

• The <html> element has an implicit width:
100% and spans the entire viewport

Viewports
• On mobile it’s quite a bit more complicated

• If the (narrow) browser window were to
be the viewport, many sites would be
squeezed to death

• And mobile browsers must render all sites
correctly, even if they haven’t been mobile-
optimized

Viewports
• That’s why the mobile browser vendors

have split the viewport into two:

• The layout viewport, the viewport that CSS
declarations such as padding-left: 34% use,

Viewports
• That’s why the mobile browser vendors

have split the viewport into two:

• The layout viewport, the viewport that CSS
declarations such as padding-left: 34% use,

• and the visual viewport, which is the part of
the page the user is currently seeing

• Both are measured in CSS pixels

Viewports
• Initially most browsers make the visual

viewport equal to the layout viewport

• by zooming the page out as much as
possible

Viewports
• Initially most browsers make the visual

viewport equal to the layout viewport

• by zooming the page out as much as
possible

• Although the page is unreadable, the user
can at least decide which part he’d like to
concentrate on and zoom in on that part

Zooming

Zooming
• On the desktop the viewport becomes less

wide and the CSS pixels become larger.

• The same amount of device pixels now
contains less CSS pixels, after all.

• So padding-left: 34% is recalculated,

• and width: 190px now covers more device
pixels

Zooming
• On mobile the visual viewport becomes

less wide, but the layout viewport remains
static. Thus CSS declarations are not re-
computed.

• The visual viewport now contains less CSS
pixels.

• The user sees less of the complete site.

JavaScript
properties

screen.width and screen.height

• The width and height of the screen

• In device pixels (or dips)

• Totally useless. Don’t bother reading it out

JavaScript properties

document.documentElement.clientWidth and
document.documentElement.clientHeight

• The width and height of the layout viewport

• In CSS pixels

• Useful, though mostly because of media
queries

JavaScript properties

window.innerWidth and window.innerHeight

• The width and height of the visual viewport

• In CSS pixels

• Extremely important. It tells you how much
the user is currently seeing

JavaScript properties

document.documentElement.offsetWidth and
document.documentElement.offsetHeight

• The width and height of the <html> element

• In CSS pixels

• Very occasionally useful

JavaScript properties

window.pageXOffset and window.pageYOffset

• The current scrolling offset

• In CSS pixels

• Useful. Works just as on desktop

JavaScript properties

• System pioneered by Nokia and BlackBerry

• Picked up by Apple

• Android supports it only from 3 on

• IE9 on Windows Phone does not support it

• But otherwise browser compatibility is
quite decent

JavaScript properties

document.documentElement.clientWidth /
window.innerWidth

• This gives the current zoom level

• You’re not interested in the zoom level,
though

• You want to know how much the user is
currently seeing

• The visual viewport, in other words

JavaScript properties

Media
queries

Meta viewport
@media all and (max-width: 600px) {

 .sidebar {
float: none;

}
}

Media queries
• There are two important media queries:

• width (min-width and max-width)

• device-width (min-device-width and max-
device-width)

• width is the one you want

Media queries - device-width
• device-width gives the width of the device

screen

• in device pixels

• Equal to screen.width

Media queries - width
• width gives the width of the viewport

• in CSS pixels

• (There are a few zooming problems on
desktop, though)

• Equal to
document.documentElement.clientWidth

• device-width gives the width of the device
screen

• in device pixels or dips

• Equal to screen.width

• On mobile the screen is far smaller than on
desktop, but that doesn’t matter

Media queries - device-width

• width gives the width of the viewport

• in CSS pixels

• Equal to
document.documentElement.clientWidth

• On mobile this means the layout viewport

Media queries - width

Media queries
• width is the media query you want

• but at first sight it seems to be totally
useless on mobile

• Usually we don’t care about the width of
the layout viewport

• We need to treat one more element,
though.

Meta
viewport

Meta viewport

<meta name=”viewport”
content=”width=device-width”>

Meta viewport

@viewport {
 width: device-width;
}
Only Opera for now

Meta viewport
<meta name=”viewport”

content=”width = device-width”>

• The meta viewport tag tells the browser to
set the size of the layout viewport

• You can give a pixel value

• or device-width, which means the screen size
in dips (or device pixels)

Meta viewport
<meta name=”viewport”

content=”width = device-width”>

• There is little reason to use other values
than device-width

• And because you tell the layout viewport to
become as wide as the device

• the width media query now contains useful
data

Media queries
• In theory the device-width and width media

queries would now return the same values

• but it uses device pixels or dips, which is not
what you want

• This is a frighteningly complicated area

• Don’t go there

• Use width

Responsive design
• So the trick for creating a responsive design

• is using <meta name=”viewport”
content=”width=device-width” />

• in combination with width media queries

• You probably already knew that

• but now you also understand why

Peter-Paul Koch
http://quirksmode.org
http://twitter.com/ppk

MoBeers, 10 April 2012

Thank you
I’ll put these slides online

Questions?

http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org
http://quirksmode.org

