
Viewports
Peter-Paul Koch	

http://quirksmode.org	

http://twitter.com/ppk	

WebVisions, 9 May 2014	

or: Why responsive
design works

Peter-Paul Koch	

http://quirksmode.org	

http://twitter.com/ppk	

WebVisions, 9 May 2014	

1

Pixels

A pixel is not a pixel
• CSS pixels	

• Device pixels

You already know what they are. You just don’t
realise it.

CSS pixels
• CSS pixels are the ones we use in

declarations such as width: 190px or
padding-left: 20px	

• They are an abstract construct	

• Their size increases or decreases when the
user zooms

Device pixels
• Device pixels are the physical pixels on the

device	

• There’s a fixed amount of them that
depends on the device

Device pixels

Device pixels

What kind of pixels?

In general, almost all pixels you use in your
code will be CSS pixels.	

The only exception is screen.width	

… but screen.width is a serious problem that
we’ll study later

2

Viewports

Viewports

• The 34% is calculated relative to its
container: the <body>.	

• Every block-level element, including
<html> and <body>, has an implicit width:
100%.	

• So we get 34% of the <body> width of
100%.	

• 100% of what? Of the <html> width, which
is again 100%.

Viewports

• The <html> element’s width is calculated
relative to the viewport.	

• Also called the initial containing block.	

• On desktop it’s equal to the browser
window width.	

• On mobile it’s more complicated.

Viewports
• When you zoom in, you enlarge the CSS

pixels	

• and as a result less of them fit on the
browser screen	

• Thus the viewport becomes smaller

Viewports
• On mobile it’s quite a bit more complicated	

• Mobile browsers must render all sites
correctly, even if they haven’t been mobile-
optimized 	

• If the (narrow) browser window were to
be the viewport, many sites would be
squeezed to death

Viewports
• That’s why the mobile browser vendors

changed the rules:	

• By default, the viewport is 800-1024px
wide (depending on the browser), with
980px the most common size	

• We call this the layout viewport	

• Responsive design is the art of overriding
the default width of the layout viewport

Viewports
• But this layout viewport is now much wider

than the mobile screen	

• Therefore we need a separate viewport for
the actual window width	

• We call this the visual viewport

JavaScript - layout viewport
document.documentElement.clientWidth	

document.documentElement.clientHeight

Works (almost) everywhere.

window.innerWidth	

window.innerHeight

Doesn’t work in Android 2, Opera Mini, and
UC 8.

JavaScript - visual viewport

Viewports

• layout viewport	

• visual viewport

So the desktop viewport has been split into
two:

Viewports

• layout viewport	

• visual viewport	

!

!

• ideal viewport

So the desktop viewport has been split into
two:	

!

!

But there’s a third mobile viewport that has no
equivalent on the desktop:

Ideal viewport
• What mobile browser vendors want is to

give the site the perfect width for the
device	

• so that zooming and panning are not
necessary	

• and the user can read the text	

• Enter the ideal viewport, which has the
ideal size for the device	

• Essentially a width and a height

Ideal viewport
• There are no wrong dimensions for the

ideal viewport.	

• They’re what they need to be for the
device they run on.	

• (Admittedly, there are weird values. But
they’re not wrong.)

Ideal viewport: 320px

Ideal viewport: 320px

screen.width	

screen.height

UNRELIABLE!	

Some browsers define screen.width and
screen.height as the dimensions of the ideal
viewport	

while others define them as the number of
device pixels

JavaScript - ideal viewport

3

Meta
viewport

Meta viewport
• In order to create a responsive design we

must set the layout viewport dimensions to
the ideal viewport dimensions.	

• How?

Meta viewport

<meta name=”viewport” 	
content=”width=device-width”>

Meta viewport
<meta name=”viewport” 	

content=”width = device-width”>

• By default, the layout viewport is between
800 and 1024 pixels wide.	

• The meta viewport tag sets the width of the
layout viewport to a value of your choice.	

• You can use a pixel value (width=400)	

• or you can use the device-width keyword to
set it to the ideal viewport

Meta viewport
<meta name=”viewport” 	

content=”width = device-width”>

• I’m assuming this does not come as a
surprise	

• But …	

• did you know that the following does exactly
the same?

Meta viewport
<meta name=”viewport” 	

content=”initial-scale = 1”>

• In theory, initial-scale gives the initial zoom
level (where 1 = 100%)	

• 100% of WHAT?	

• Of the ideal viewport	

• In practice, it also sets the layout viewport
dimensions to the ideal viewport

Meta viewport
<meta name=”viewport” 	

content=”initial-scale = 2”>

• In theory, initial-scale = 2 tells the browser
to zoom in to 200%.	

• It does so, but many browsers set the layout
viewport to half the ideal viewport.	

• Why half? Because zooming to 200% means
that only half as many CSS pixels fit the visual
viewport

Meta viewport
<meta name=”viewport” 	

content=”initial-scale = 1”>

• And yes, this is weird.	

• I wonder what Apple was smoking when it
set these rules.

Let’s mess
things up

Meta viewport
<meta name=”viewport” 	

content=”width = 400,initial-scale = 1”>

• Now the browser gets conflicting orders.	

• Set the layout viewport width to 400px.	

• No, wait, set it to the ideal viewport width
(and also set the zoom to 100%).	

• Browsers react by taking the highest value

Min-width viewport
<meta name=”viewport” 	

content=”width = 400,initial-scale = 1”>

• “Set the layout viewport width to either
400px, or the ideal viewport width,
whichever is larger”	

• If the device orientation changes, this is
recalculated.	

• As a result, the layout viewport now has a
minimum width of 400.	

• Is this useful? Dunno.

Safari workaround
<meta name=”viewport” 	

content=”width = device-width”>

• Safari always takes the portrait width (320
on iPhone, 768 on iPad).	

• Sometimes this is what you want; at other
times it isn’t.	

• How to solve this?

Safari workaround
<meta name=”viewport” 	

content=”initial-scale = 1”>

• Now Safari does it right. In portrait mode it’s
the ideal portrait width; in landscape mode
it’s the ideal landscape width.	

• All other browsers do the same.	

• Except for IE, which has exactly the opposite
bug.

Safari workaround
<meta name=”viewport” 	

content=”width=device-width,initial-scale=1”>

• Use both device-width and initial-scale.	

• initial-scale works in Safari	

• device-width works in IE	

• and both work in all other browsers

Perfect meta viewport

<meta name=”viewport” 	
content=”	
 width = device-width, 	
 initial-scale = 1”>

4

Media
queries

@media all and (max-width: 600px) {	
 .sidebar {	

float: none;	
}	

}

Media queries

Media queries
• There are two important media queries:	

• width (min-width and max-width)	

• device-width (min-device-width and max-
device-width)	

• width is the one you want

Media queries - device-width
• device-width media query is always equal to

screen.width	

• but the problem is screen.width may have
two meanings, depending on the browser:	

• 1) ideal viewport	

• 2) number of device pixels

Media queries - width
• width gives the width of the layout

viewport	

• This is what you want to know 	

• Works always and everywhere

Responsive design
• Set the layout viewport width to the ideal

viewport width (or, rarely, another value)	

• Use the width media query to figure out
how wide the layout viewport is	

• Adjust your CSS to the width you found	

• That’s how responsive design works. You
already knew that, but now you understand
why it works.

Media queries
• Always use min- or max-width.	

• Thus you define a breakpoint: “these styles
are valid for all widths equal to or less/
greater than X”	

• Exact widths, such as 320, are going to
misfire in a lot of browsers. (Remember the
342px of the Z10.)	

• There’s more than just the iPhone.

		 <meta name=”viewport” 	

		 content=”width=device-width,initial-scale=1”>	

!

@media all and (max-width: 600px) {	
!

}

Responsive design

Responsive design
• But we’d like to make our design respond

to the physical width of the device, too.	

• For instance, by setting a min-width: 25mm
on our navigation items	

• Tough luck	

• You can’t

5

CSS units

CSS units
• width: 25mm does not mean the element is

25 real-life millimeters wide	

• Instead, it means 94.488 pixels	

• cm, mm, and in are in a sense fake units,
because they do not correspond to the real
world

CSS units
• 1 inch is defined as 96 CSS pixels	

• If you zoom, the CSS pixels become larger, 	

• and your inches become larger, too.	

• It has nothing to do with the real world.

CSS units
• 1 inch is defined as 96 CSS pixels	

• 1 inch is defined as 2.54 cm	

• 1 cm is defined as 10 mm	

• 1 inch is defined as 72 points	

• 1 pica is defined as 12 points

CSS units
• I used to think this is a bad idea	

• But I changed my mind	

• If an element would have a width of 25
real-world millimeters	

• the browser would have to recalculate its
width every single time the user zooms	

• Eats too much battery life and processor
time

CSS units
• But surely resolution tells us something

useful.	

• …	

• doesn’t it?

6

Resolution

Resolution
if (window.devicePixelRatio >= 2)	

!

@media all and (

		 (-webkit-min—device-pixel-ratio: 2),	

		 (min-resolution: 192dpi)	

)

Resolution
• What is device pixel ratio?	

• It’s the ratio of screen size in device pixels
and ideal viewport size

iPhone 3G
• device pixels: 320	

• ideal viewport: 320	

• Therefore the devicePixelRatio is 1

iPhone 4S
• device pixels: 640	

• ideal viewport: 320	

• Therefore the devicePixelRatio is 2

Samsung Galaxy Pocket
• device pixels: 240	

• ideal viewport: 320	

• Therefore the devicePixelRatio is 0.75

BlackBerry Z10
• device pixels: 768	

• ideal viewport: 342	

• Therefore the devicePixelRatio is
2.24561403508772	

• (Weird, but not wrong)

7

More
information

The Mobile Web
Handbook	

by me	

Published by
Smashing Magazine	

For sale online	

Ships late June

Thank you	

I’ll put these slides online	

Questions?

Peter-Paul Koch	

http://quirksmode.org	

http://twitter.com/ppk	

WebVisions, 9 May 2014	

